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We explore a new general-purpose heuristic for finding high-quality solutions to hard discrete optimiza-
tion problems. The method, called extremal optimization, is inspired by self-organized criticality, a con-
cept introduced to describe emergent complexity in physical systems. Extremal optimization successively
updates extremely undesirable variables of a single suboptimal solution, assigning them new, random
values. Large fluctuations ensue, efficiently exploring many local optima. We use extremal optimization
to elucidate the phase transition in the 3-coloring problem, and we provide independent confirmation
of previously reported extrapolations for the ground-state energy of 6J spin glasses in d � 3 and 4.
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Many natural systems have, without any centralized or-
ganizing facility, developed into complex structures that
optimize their use of resources in sophisticated ways [1].
Biological evolution has formed efficient and strongly in-
terdependent networks in which resources rarely go to
waste. Even the morphology of inanimate landscapes ex-
hibits patterns that seem to serve a purpose, such as the
efficient drainage of water [2,3].

Natural systems that exhibit self-organizing qualities of-
ten possess a common feature: a large number of strongly
coupled entities with similar properties. Hence, at some
coarse level they permit a statistical description. An exter-
nal resource (sunlight in the case of evolution) drives the
system, which then takes its direction purely by chance.
Like descending water breaking through the weakest of all
barriers in its wake, biological species are coupled in a
global comparative process that persistently washes away
the least fit. In this process, unlikely but highly adapted
structures surface inadvertently. Optimal adaptation thus
emerges naturally, from the dynamics, simply through a
selection against the extremely “bad.” In fact, this process
prevents the inflexibility inevitable in a controlled breed-
ing of the “good.”

Various models relying on extremal processes have been
proposed to explain the phenomenon of self-organization
[4]. In particular, the Bak-Sneppen model of biological
evolution is based on this principle [5,6]. Assuming an
0031-9007�01�86(23)�5211(4)$15.00
unspecified interdependency between species, it produces
salient nontrivial features of paleontological data such as
broadly distributed lifetimes of species, large extinction
events, and punctuated equilibrium.

In the Bak-Sneppen model, species are located on the
sites of a lattice, and have an associated “fitness” value be-
tween 0 and 1. At each time step, the one species with the
smallest value (poorest degree of adaptation) is selected for
a random update, having its fitness replaced by a new value
drawn randomly from a flat distribution on the interval
�0, 1�. But the change in fitness of one species impacts the
fitness of interrelated species. Therefore, all of the species
at neighboring lattice sites have their fitness replaced with
new random numbers as well. After a sufficient number of
steps, the system reaches a highly correlated state known
as self-organized criticality (SOC) [7]. In that state, almost
all species have reached a fitness above a certain threshold.
These species, however, possess punctuated equilibrium,
since only one’s weakened neighbor can undermine one’s
own fitness. This coevolutionary activity gives rise to chain
reactions called “avalanches,” large fluctuations that re-
arrange major parts of the system, potentially making any
configuration accessible.

Although coevolution does not have optimization as its
exclusive goal, it serves as a powerful paradigm. We have
used it as the motivation for a new method of approximat-
ing solutions to discrete optimization problems [8]. The
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heuristic we have introduced, called extremal optimization
(EO), follows the spirit of the Bak-Sneppen model, merely
updating those variables having the “worst” values in a so-
lution and replacing them by random values without ever
explicitly improving them.

Previously, several heuristic methods inspired by natural
processes have been proposed, notably simulated anneal-
ing [9] and genetic algorithms [10]. These have aroused
considerable interest among physicists, in the development
of physically motivated heuristics [11–13], and in their
applications to physical problems [14–16]. EO adds a dis-
tinctly new approach to optimization by utilizing large fluc-
tuations inherent in systems driven far from equilibrium.
In this Letter, we demonstrate EO’s generality, the sim-
plicity of its implementation, and its results, for a physical
problem as well as for a classic combinatorial optimization
problem. A tutorial introduction is given in Ref. [17].

The physical problem we consider is a spin glass [18].
It consists of a d-dimensional hypercubic lattice of length
L, with a spin variable xi [ �21, 1� at each site i, 1 #

i # n �� Ld�. A spin is connected to each of its nearest
neighbors j via a bond variable Jij [ �21, 1�, assigned at
random. The configuration space V consist of all configu-
rations S � �x1, . . . , xn� [ V where jVj � 2n.

We wish to minimize the cost function, or Hamiltonian

C�S� � H�x� � 2
1
2

X
�i,j	

Jijxixj . (1)

Because of frustration [18], ground state configurations
Smin are hard to find, and it has been shown that for d . 2
the problem is among the hardest optimization problems
[19].

To find low-energy configurations, EO assigns a fitness
to each spin variable xi

li � xi

µ
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2
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j

Jijxj

∂
, (2)

so that

C�S� � 2

nX
i�1

li . (3)

Unlike in genetic algorithms, the fitness does not character-
ize an entire configuration, but simply a single variable of
the configuration. In similarity to the Bak-Sneppen model,
EO then proceeds to search V by sequentially changing
variables with bad fitness at each update step. The sim-
plest “neighborhood” N�S� for an update consists of all
configurations S0 [ N�S� that could be reached from S
through the flip of a single spin. After each update, the
fitnesses of the changed variable and of all its neighbors
are reevaluated according to Eq. (2).

The basic EO algorithm proceeds as follows:
(1) Initialize configuration S at will; set Sbest :� S.
(2) For the “current” configuration S,

(a) Evaluate li for each variable xi .
(b) Find j satisfying lj # li for all i, i.e., xj

has the “worst fitness.”
(c) Choose S0 [ N�S� so that xj must change.
5212
(d) Accept S :� S0 unconditionally.
(e) If C�S� , C�Sbest� then set Sbest :� S.

(3) Repeat at step (2) as long as desired.
(4) Return Sbest and C�Sbest�.
Initial tests have shown that this basic algorithm is quite

competitive for optimization problems, such as graph par-
titioning [8], where EO can choose randomly among many
S0 [ N�S� satisfying step (2c). But, in cases such as the
single spin-flip neighborhood above, focusing on only the
worst fitness [step (2b)] leads to a deterministic process,
leaving no choice in step (2c). To avoid such “dead ends”
and to improve results [8], we introduce a single parameter
into the algorithm. We rank all the variables xi according
to fitness li , i.e., find a permutation P of the variable
labels i with

lP�1� # lP�2� # · · · # lP�n� . (4)

The worst variable xj [step (2b)] is of rank 1, j � P�1�,
and the best variable is of rank n. Now, consider a proba-
bility distribution over the ranks k,

Pk ~ k2t , 1 # k # n , (5)

for a given value of the parameter t. At each update, select
a rank k according to Pk . Then, modify step (2c) so that
the variable xi with i � P�k� changes its state.

For t � 0, this “t-EO” algorithm is simply a random
walk through V. Conversely, for t ! `, the process ap-
proaches a deterministic local search, updating only the
lowest-ranked variable, and is bound to reach a dead end
(see Fig. 1). However, for finite values of t the choice of
a scale-free distribution for Pk in Eq. (5) ensures that no
rank gets excluded from further evolution, while maintain-
ing a clear bias against variables with bad fitness.

For the spin glass, we obtained our best solutions for
t ! 11, as shown in Fig. 1. Generally, over many op-
timization problems, the preferred value seems to scale
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FIG. 1. Plot of the average energies obtained by EO for the
6J spin glass in d � 3 as a function of t. For each size n,
10 instances were chosen. For each instance, 10 EO runs were
performed starting from different initial conditions at each t.
The results were averaged over runs and over instances. The
best results are obtained at t moving slowly toward t ! 11 for
n ! `.
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slowly as t 2 1 
 1� lnn for increasing n. Experiments
with random graphs support this expectation [20], although
the dependence on n can be practically negligible. For in-
stance, at fixed t � 1.4, t-EO already reproduced many
testbed results for the partitioning of graphs of sizes n �
1000 to n * 105 [8].

We have run the t-EO algorithm with t � 1.15 on a
large number of realizations of the Jij , for n � Ld with
L � 5, 6, 7, 8, 9, 10, 12 in d � 3, and with L � 3, 4, 5,
6, 7 in d � 4. To reduce variances, we fixed j

P
Jijj # 1.

For each instance, we have run EO with five restarts from
random initial conditions, retaining only the lowest energy
state obtained, and then averaging over instances. Inspec-
tion of the convergence results for the genetic algorithms
in Refs. [11,14] suggest a runtime scaling at least as n3-n4

for consistent performance. Indeed, using 
n4�100 up-
dates enables EO to reproduce its lowest energy states on
about 80% to 95% of the restarts, for each n. Our re-
sults are listed in Table I. A fit of our data with ed�n� �
ed�`� 1 A�n for n ! ` predicts e3�`� � 1.7865�3� for
d � 3 and e4�`� � 2.093�1� for d � 4. Both values are
consistent with the findings of Refs. [14–16], providing
independent confirmation of those results with far less pa-
rameter tuning.

In the future, we intend to use EO to explore the
properties of states near the ground state. As the results on
3-coloring in Ref. [21] suggest, EO’s continued fluctua-
tions through near-optimal configurations even after first
reaching near-optimal states may provide an efficient
means of exploring a configuration space widely.

To demonstrate the versatility of EO (see also Ref. [22]),
we now turn to a popular combinatorial optimization prob-
lem, graph coloring [23]. Specifically, we consider random
graph 3-coloring [24,25]. A random graph is generated by
connecting any pair of its n vertices by an edge, with prob-
ability p [26]. In K-coloring, given K different colors used
to label the vertices of a graph, we need to find a coloring
that minimizes the number of “monochromatic” edges con-
necting vertices of identical color. We implement EO by
defining li for each vertex to be 21�2 times the number
of monochromatic edges attached to it. Then, Eq. (3) rep-
resents exactly the cost function, counting the number of
monochromatic edges present. As a simple neighborhood
definition, at each update we merely change the color of
one bad vertex selected according to t-EO [step (2c)].

As a special challenge, we have used t-EO for
3-coloring to investigate the phase transition that occurs
under variation of the average vertex degree a � pn
[25,27]. Random graphs with small a can almost al-
ways be colored at zero cost, while graphs with large a

are typically very homogeneous with a high but easily
approximated cost. Located at some point acrit between
these extremes, there is a sharp phase transition to
nonzero cost solutions. Such a critical point appears
in many combinatorial optimization problems, and has
been conjectured to harbor those instances that are the
hardest to solve computationally [27]. Previously we have
shown [28] that t-EO significantly outperforms simulated
annealing near the phase transition of the bipartitioning
problem of random graphs.

Using EO we can estimate the value of acrit for
3-coloring. To this end, we have averaged the cost EO
obtains as a function of the vertex degree a. We gener-
ated 10 000, 5000, 1300, and 650 instances for n � 32,
64, 128, and 256, respectively, for values of 3.6 # a # 6.
Since n is relatively small and the runs were chosen to be
very long (100n2 updates), we found optimal performance
at t � 2.7. Such excessively long runs were used as
part of a study to find all minimal-cost solutions for
each instance, in order to determine their overlap (or
“backbone”). Elsewhere [21] we show that this back-
bone appears to undergo a first-order phase transition as
conjectured in Ref. [29].

Finite size scaling with the ansatz

�C	 �a, n� 
 f��a 2 acrit�n1�n� (6)

applied to the results depicted in Fig. 2 predicts acrit �
4.72�1� and n � 1.53�5�. These are the most precise esti-
mates to date. This value of n appears close to that found
for the 3-satisfiability problem [30].

In conclusion, we have presented a new optimization
method, called extremal optimization due to its derivation
TABLE I. EO results for the 6J spin glass in d � 3 on the left, compared with genetic algorithm results from Refs. [14,15], and
in d � 4 on the right (see also Ref. [16]). For each size n � Ld we have studied a large number I of instances. EO approximations
to the average ground-state energy per spin are given by ed�n�. Also shown is the average time t (in seconds) needed for EO to find
the presumed ground state, on a 450 MHz Pentium.

L I e3�n� t Ref. [14] Ref. [15] I e4�n� t

3 40 100 21.6712�6� 0.0006 21.671 71�9� 21.6731�19� 10 000 22.0214�6� 0.0164
4 40 100 21.7377�3� 0.0071 21.737 49�8� 21.7370�9� 4472 22.0701�4� 0.452
5 28 354 21.7609�2� 0.0653 21.760 90�12� 21.7603�8� 2886 22.0836�3� 8.09
6 12 937 21.7712�2� 0.524 21.771 30�12� 21.7723�7� 283 22.0886�6� 86.3
7 5936 21.7764�3� 3.87 21.777 06�17� 32 22.0909�12� 1090
8 1380 21.7796�5� 22.1 21.779 91�22� 21.7802�5�
9 837 21.7822�5� 100

10 777 21.7832�5� 424 21.783 39�27� 21.7840�4�
12 30 21.7857�16� 9720 21.784 07�121� 21.7851�4�
5213
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FIG. 2. Plot of the average cost as a function of the average
vertex degree a for random graph 3-coloring. According to
Eq. (6), the data collapse in the inset predicts acrit � 4.72, in-
dicated by a vertical line.

from extremally driven statistical systems. At each
update step, the algorithm assigns fitnesses to variables
xi , and then generates moves by randomly updating an
“unfit” variable. EO gives no consideration to the move’s
outcome. Large fluctuations in the cost function can
accumulate over many updates; only the bias against poor
fitnesses guides EO back towards improved solutions.

A drawback to EO is that a general definition of fitness
for individual variables may prove ambiguous or even im-
possible. Also, each variable xi could have a large number
of states to choose from, as in K-coloring with large K;
random updates would then be more likely to remove than
to create well-adapted variables (this is notably the case for
the traveling salesman problem [8]). And in highly con-
nected systems (e.g., for a ¿ 1 in K-coloring), EO may
be slowed down considerably by continual fitness recalcu-
lations [step (2a)].

However, extremal optimization is readily applicable to
problems whose cost can be decomposed into contribu-
tions from individual degrees of freedom. It is easily im-
plemented and, using very few parameters, it can prove
highly competitive. We have shown this on the spin glass
Hamiltonian, obtaining d � 3 and 4 ground-state energies
that are consistent with the best known results. We have
also used EO to explore the phase transition in random
graph 3-coloring. Its results enable us to provide, by way
of finite size scaling, the first sound estimates of critical
values for this problem.
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